2025年4月22-24日
上海世博展览馆

汽车电子展|浅谈汽车电子的AI时刻

半导体和人工智能的快速发展让新能源汽车的角逐场焦点逐渐由电动化转向智能化。我们常说智能汽车的“终极态”是AI,AI又会重新定义汽车智能化。下面汽车电子展小编就来聊一聊未来汽车产业的走向。

目前车用AI芯片的算力、性能以及能够满足的智能驾驶相关运算已经成为决定汽车智能化发展的关键指标。

新能源汽车对传统燃油车的颠覆,也就是新技术对旧技术持续广泛的替代。新旧技术出现的矛盾,不仅仅局限于技术之间,更是新旧技术所代表的企业、产业、利益集群甚至国家之间的矛盾。汽车行业的供应链和产业链开始重新洗牌,传统的汽车供应链定位和角色会因为新技术的出现发生转变,

01.汽车电子展浅谈车规级AI芯片发展现状

国外主流车载汽车AI芯片有NVIDIA、Mobileye等,国内较大的车载AI芯片厂商有黑芝麻、地平线、华为MDC等,智能座舱则以芯驰科技、芯擎科技等企业为主要代表。

目前像红旗、长安、长城等主流主机厂已经与国内的芯片厂商开展密切合作。国产芯片若想真正实现产业化,除了把产品打磨完善外,开发工具链、应用软件丰富程度、售后服务等也要做优做强。另外,国外厂商针对客户的定制化开发居多,工具链和开源算法更加丰富、精良。

从芯片角度,车规级AI芯片和其他应用领域如消费、工控、安防等的AI芯片最大不同就是——车规。ISO26262的车规认证要求非常严格,单IP供应商的角度看,如果需要帮助客户取得ISO26262认证,IP要遵循车规的开发流程、提供相应的测试文档,甚至IP软硬件也要取得车规认证,所以车规是汽车电子相较于其他领域电子产品来说非常重要的一点。

除此之外,芯片制程、工作温度、电路设计、工艺处理系统成本、生命周期内的容错率等诸多方面,车规级芯片比消费级芯片更为严格。在供应链方面,车规级芯片要求供应链要有10到15年以上的供应周期,意味着车规芯片的供应商要有更强的供应链管理能力。

02.汽车电子展浅谈AI兴起对智能驾驶芯片的影响

前段时间,上海车展聚焦“智能驾驶+智能座舱”,体现了汽车将成为核心计算平台的趋势。智能驾驶和智能座舱兴起表明新消费群体更看重数字化和智能化的体验,例如购车时,智能座舱和智能驾驶开始成为车主和车企的主要关注点和卖点。这一趋势一方面说明,智能汽车新型电子电气架构的变革正在成为现实。以往,传统汽车主要采用分布式ECU架构,单个ECU功能单一,算力低,座舱的功能相对来说比较简单。但随着汽车智能化发展的加速,车上新增功能越来越多,架构部署日渐复杂,成本随之水涨船高,并且面临着一系列如带宽瓶颈,通讯速率低等问题,分布式ECU架构已不再适应现在的汽车发展。

智能驾驶和智能座舱的核心计算平台是域集中式电子电气架构的产物,不存在原有分布式ECU架构遗留的种种问题,更容易进行战略的布局和落地,所以这两个领域也成了初创企业的必争之地。

另一方面,软件定义汽车的趋势已成为业界共识。在智能汽车中,软件应用率最高的也是智能驾驶和智能座舱这两个板块。所以,不难理解智能座舱和智能驾驶已是目前业界和社会最关切的有关汽车电子的话题之一。

谈到智能驾驶和智能座舱,最大功臣——车载芯片不得不提及。智能驾驶汽车涉及到传感器环境感知、高精地图/GPS 精准定位、V2X 信息通信、多种数据融合、决策与规划算法、运算结果的电子控制与执行等过程,此过程需要一个强劲的计算平台统一实时分析、处理海量数据,进行复杂逻辑运算,对计算能力的要求非常高。

等待未来座舱升级到更高阶后,大量应用将出现,整体车内软件的反应速度和视觉效果会有极大飞跃,这对于车主来说是最直观的算力优势体现。

AI芯片本身就是专门为人工智能应用而设计的芯片,最初设计初衷是希望在硬件层面加速人工智能算法的运算,以及提高算法的效率和性能。AI芯片一般包括处理器、存储器、加速器等各个核心组件,还可能有FPGA、NPU、DSP各种各样的这种组件,它最重要的是用来实现图像识别、语音识别、自动驾驶等多种人工智能应用。

对于各式各样的芯片,CPU通用性最好,但计算性能最低,GPU次之,NPU不适用通用计算,只能满足模型机器学习计算的加速器。芯擎科技业务拓展经理邵楠认为,行业已经确认CPU并不是最适用于AI模型的算力芯片;GPU通用性更强,而且有CUDA这样的成熟框架;FPGA灵活性强,针对计算密集型和通信密集型等应用可以无限制编程;ASIC是定制化的设计,可以针对不同的算法模型做到定向设计、验证,性能较好。

对于汽车来说,人工智能应用主要集中在座舱域和智能驾驶域。座舱域中,AI芯片通常出现在人机交互的应用中,比如视频信号的处理,中控屏上显示倒车信息等。自动驾驶域主要用AI芯片来做并行计算,比如图像算法的处理,模型训练等等。

而动力域,车身域和底盘域的汽车电子还是在传统汽车控制领域。以前,单个ECU里面就是单个MCU,现在,域控制器里更多是多核MCU控制类芯片。这些“域”更关注车辆安全,例如功能安全、信号传输时延等,反而对AI芯片的算力需求较低。

中汽中心工程院网联与线控底盘室主任郭蓬特别提及,现在 L3级以上的智能驾驶主要运用在ToB端,也就是商务车上运用更广,此外,在封闭及半封闭的场景下,落地会更容易一些。ToC端的智能驾驶还是L3以下,但消费者可以通过ADAS、变道辅助、TJA等功能感受智能驾驶的人性化和便捷。

智能交互方面,很多汽车厂商或者芯片公司正在开发一些拟人化的算法,让驾驶员进入车厢后,车内的氛围灯、各类功能可以根据驾驶员的习惯去变化和适应,使汽车不单单只是一辆交通工具,更像一位私人助手。

03.汽车电子展浅谈技术变革下的汽车供应链转变

如今,汽车行业这种金字塔形的供应关系慢慢被打破。整车厂开始进行扁平化的供应关系管理,例如跳过Tier 1直接找芯片企业合作,甚至自己造芯,特斯拉FSD芯片就是如此。

现在很多车企在走软硬件分离的路线。以前整个零部件打包给Tier 1开发,现在更多是找供应商提供,软件采用联合开发的模式。Tier 1逐渐向中间件业务靠拢,应用层的车企掌控更多自主权,这种趋势意味着车企从过去分离的功能定义转向整车整体的布局。比如全资购买一家芯片企业,或者和其他企业去合资成立芯片公司等。除了芯片,整车厂也将眼光投向软件和操作系统,尤其是某些特定的数字化服务。Tier 2、Tier 3、软件供应商等也不仅仅是底层角色,它们开始向上做基于智能汽车应用的生态布局。

不过,有些车企会根据自身条件的定位和战略进行软件自研,比如小鹏是全栈自研,研发成本非常大,有些车企则采取部分自研,成本控制比较灵活。

04.结语

汽车电子展小编觉得,汽车供应链正处于群雄混战阶段,链上各节点都在不停地寻找自我定位。当然,不是所有的整车厂想自研就能有自研的能力,也要根据角色去划分,不同阶段的供应商和整车厂肯定最终都能找到自己的角色和位置,只不过跟原来的关系有所更迭和变化。汽车电子展小编觉得,在汽车电子AI化的战场上,越愿意拥抱新技术的企业,越有想要破除旧技术阻力的决心和信心,就越容易在这场汽车革命的“雄关漫道”中占据高地,引领产业向前发展。